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a b s t r a c t

In the present paper, an analytical approach is proposed to determine the radial distributions of electric
field, electrons, ion densities and temperature of a DC corona discharge in wire-to-cylinder geometry,
using oxygen as feed gas. The currentevoltage (CV) characteristic measured in experiments is used as an
input in the calculation. The objective of this work is to provide approximated analytical solutions of the
corona discharge with low computational cost, which can be useful in different technological applica-
tions, such as the generation of ozone or the decomposition of pollutant gases. The predictions of the
analytical model are compared with the results obtained from a much more complete numerical
simulation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Corona discharge is initiated when a sufficiently high voltage is
applied to an electrode with a small radius of curvature, usually
a point, a wire or a blade. The electric field is strongly reinforced in
the vicinity of the stressed electrode, and free electrons generated
by natural background radiation are accelerated by the electric field
towards the anode. If they gain sufficient energy, they can ionize
new molecules, thus producing more positive ions and electrons.
Electrons can also attach to neutral molecules to form negative ions
or to initiate electron-induced reactions that may generate radicals.
The polarity of corona discharge is determined by the sign of the
voltage applied to the stressed electrode. Of course, the motion of
charged particles is different in positive and negative polarities, and
this has important consequences on the characteristics of the
electrical discharge. In positive polarity, electrons and negative ions
drift towards the point, wire or blade. Therefore, the ionization
region in positive corona is significantly smaller than in the case of
negative corona.

The applications of corona discharge have known a steady
growth in industrial and technological applications, such as the
decomposition of gaseous pollutants, the sterilization of water, the
surface treatment of polymer films, the production of ozone, etc.
[1e7]. In pure oxygen, ozone is the most important molecule
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generated by corona discharge. As it is well known, this molecule is
generated following a two-step process [8]:

(i) Free radicals of oxygen are generated by direct dissociation of
molecular oxygen,

eþ O2/Oþ Oþ e: (R1)
(ii) Ozone is then produced via a three-body reaction:

Oþ O2 þ O2/O3 þ O2: (R2)
Consequently, the knowledge of the electron density distribu-
tion and of the reaction rate coefficient (R1), which depends on the
electric field strength, is essential to evaluate the radial distribution
of atomic oxygen, and to quantify the ozone generated through
reaction (R2), which is also temperature dependent. The develop-
ment of many other plasma-based applications requires as well
a precise knowledge of the spatial distribution of charged particles,
electric field and temperature.

Many numerical studies have been carried out in the past to
determine these parameters [9e17]. For example, Pontiga et al. [9]
studied the generation of ozone by computing the spatial distri-
bution of the species generated in a wire-cylinder corona discharge
in pure oxygen using different plasma chemistry models. The
numerical model of Chen et al. [10] for ozone generation by positive
DC corona discharges in dry air combined the physical processes in
the corona discharge with the chemistry of ozone formation and
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Fig. 1. Schematic of the experimental apparatus used in the experiments.

Fig. 2. Currentevoltage characteristic of wire-to-cylinder corona discharge.
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destruction in the air stream. They solved the continuity equation
of the charged and the neutral particles separately. For a different
electrode geometry, Adamiak and Atten [12] presented a numerical
model to determine the distributions of electric field and charge
density in pointeplane positive corona discharge. In general, all
these investigations are based on the numerical resolution of the
nonlinear coupled differential equations that govern the corona
discharge. Much fewer studies have tried to obtain approximate
analytical solutions of the corona discharge. Stearn [18], for
example, analysed the positive corona discharge in coaxial cylin-
drical geometry for the air gas, by focussing on the electrical
discharge properties.

Usually, the exact calculation of the electric field and electron
density requires sophisticated modelling and, for that reason,
some authors use estimates of these parameters. For instance,
Held et al. [19] assume that the electrode gap can be divided in
two distinct regions, where either gas ionization or electron
attachment is the dominant process. Then, they compute an
approximated expression for the mean electron density, which
allows them to evaluate analytically the concentration of ozone in
an oxygen-fed wire-to-cylinder ozonizer. However, simpler
approximations are also used in other studies. For example,
Mikoviny et al. [20] have assumed a constant value of electron
density in their investigation of corona discharge in pure carbon
dioxide and its mixtures with oxygen.

In the present work, the problem of positive and negative
corona discharge in pure oxygen without gas flow will be investi-
gated analytically in coaxial wire-to-cylinder geometry using some
plausible approximations. The spatial distribution of charged
particles, electric field and temperature will then be obtained by
solving separately Poisson’s equation, the continuity equations of
charged particles and the heat equation, and taking in account the
principal physical and chemical processes of corona discharge. The
experimental currentevoltage (CV) characteristic of the corona
discharge will be used in the analytical resolution. In contrast with
a complete numerical simulation, the proposed solutions can be
evaluated in a negligible computational time, and may be useful as
a starting point for the modelling of the generation of ozone and
other radicals in corona discharge reactors. This work is a continu-
ation of previous numerical studies developed by the authors in the
field of ozone generation by corona discharge [15,17].

The paper is organized as follows. Firstly, a brief description of
the experimental setup is presented. Then, the governing equations
of positive and negative corona discharge that have been solved in
the complete numerical model are discussed. The results section is
divided in two subsections, for positive and negative polarity
respectively, at it is devoted to describing the analytic model and
discussing the different approximations.

2. Experimental set-up

The corona discharge reactor used in the experiments consisted
of a wire-to-cylinder coaxial electrode system, as shown sche-
matically in Fig. 1. The corona wire was made from tungsten, with
radius r0¼ 62.5 mm, and the cylinder wasmade from stainless steel,
with radii R ¼ 1.1 cm. Both the wire and the cylinder have identical
length, L ¼ 5 cm. The cylinders were closed with a pair of PVC
insulating caps that included parallel windows to allow observa-
tion. The reactor was filled with high purity oxygen (99.995%) at
atmospheric pressure and room temperature. Positive or negative
DC high voltage was applied to the wire with an HV amplifier (Trek
610C), while the cylinder was connected to ground through a digital
multimeter (Keithley 196). Each voltage was applied for about
45 min. Fig. 2 shows the measured currentevoltage characteristic
corresponding to both polarities of the corona discharge.
3. Governing equations

Positive and negative corona discharge in wire-to-cylinder
geometry can be numerically simulated using a fluid model
approximation, namely a continuity equation for each species
density, coupled with Gauss equation for the electric field and the
energy conservation equation for the gas temperature. Assuming
a stationary discharge, the continuity equations governing the
number density of the i-th charged species, Nc

i , and of the j-th
neutral species, Nj, can be written in cylindrical coordinates as
[16,21,22]

�1
r
d
dr

�
r
ei
e0
Nc
i miE

�
¼ Si; (1)

�1
r
d
dr

�
rDj

dNj

dr

�
¼ Sj; (2)

where r is the radial distance, ei and mi are the electrical charge and
mobility of the charged species, e0 is the elementary charge
(e0z1:602� 10�19 C), Dj is the diffusion coefficient, E is the
modulus of the electric field, and Si and Sj represent the gain/loss
balance of these species due to the chemical reactions induced by



Fig. 3. Radial distribution of electrons and negative ions near the wire (positive
corona) for V ¼ 6.8 kV, r0 ¼ 62.5 mm and R ¼ 1.1 cm (exact numerical solution).
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the electrical discharge. In writing (1) and (2), two basic approxi-
mations have been assumed: (i) the electrical discharge possesses
rotational symmetry around the wire [18,21], and (ii) the material
functions of the gas (drift velocities, reaction rate constants, etc.)
are entirely determined by the local reduced electric field E/N,
where N is the neutral gas density.

The electric field is modified by the space charge according to
Gauss equation,

�1
r
d
dr

ðrEÞ ¼ 1
30

X
i

eiN
c
i ; (3)

where 30 is the gas permittivity, and the electric field can be
obtained as the gradient of an electrical potential f, E ¼ �df/dr.

During the electrical discharge, the gas temperature increases
due to Joule heating dissipation. Therefore, according to the
simplifications already introduced in the continuity equations, the
energy equation for the gas temperature, T, can be written as

�1
r
d
dr

�
rk

dT
dr

�
¼ EJion; (4)

where k is the thermal conductivity of the gas and J is the modulus
of the current density. Since the thermal transfer between electrons
and gas molecules is very poor, only the ionic current density, Jion,
has been considered in the rate of heat dissipation. Other sources of
heat generation, such as the heat released/absorbed in chemical
reactions, will not be taken into account in this study.

The set of nonlinear differential equations (1)e(4) can be
successfully integrated using a finite-difference method with
deferred corrections. This task was accomplished in recent past
works [15,17], where the spatial distribution of electrons, ions,
neutral species and, in particular, ozone, was computed. The
chemical kinetics model considered in the numerical simulation
consisted of 15 species and 38 chemical reactions, such as electron
impact reactions (ionization, electron attachment, excitation,
dissociation, etc), reactions between ions and neutral particles
(charge transfer, electron detachment) and reactions between
neutral molecules and atoms in their ground and excited states.
Moreover, the results of the numerical simulation for ozone were
compared with the experimental measurement of the averaged
ozone density inside the corona reactor at different applied volt-
ages. The numerical results showed an acceptable agreement with
the experimental observations. Additional details about the
modelling, experiments, and the chemical kinetics of corona
discharge in oxygen can be found in the cited references. The spatial
distributions of charged species predicted by the numerical simu-
lation are presented in Figs. 3,4, 9, and 10 for positive and negative
corona, respectively.

Here, the results of the numerical simulation will be used to
justify the approximations that will be made when solving
analytically the equations of the corona discharge. Moreover, the
solutions of the analytical model will be compared with the exact
numerical results. A close agreement between the analytical and
numerical results is therefore a guarantee that the evaluation of the
ozone density from the analytical results will also be in general
agreement with the experimental measurements performed in
[15,17].
Fig. 4. Radial distribution of positive ions (positive corona) for V ¼ 6.8 kV, r0 ¼ 62.5 mm
and R ¼ 1.1 cm (exact numerical solution).
4. Results and discussion

4.1. Positive corona discharge

Ausual approximation in the study of positive corona consists in
dividing the inter-electrode space in two regions [10]: the
ionization or plasma region, and the unipolar drift region of posi-
tive ions. The ionization region extends a very short distance from
the corona wire, and it is characterized by an intense electric field.
In this region, electrons are accelerated under the effect of electric
field and cause the ionization of the neutral molecules in inelastic
collisions. Furthermore, secondary electrons produced by the
photoionization help to sustain the electrical discharge. A certain
fraction of electrons attach to neutral molecules to form negative
ions. Beyond the ionization region, the electric field strength is
insufficient to produce electrons. Therefore, the positive ions
generated in the ionization region drift towards the grounded
cylinder. The boundary between the ionization region and the
positive drift region is situated where the rate of ionization is equal
to the rate of electron attachment.

According to the results obtained from the exact numerical
solution of (1)e(3), both the ionization region and the positive drift
region are dominated by a single species. In the ionization region,
electrons are the principal charge carriers (see Fig. 3), since the
number density of negative ions, like O2

�, O3
� and O�, are at least one



Fig. 7. Radial distribution of the positive ion (O2
þ) density for r0 ¼ 62.5 mm and

R ¼ 1.1 cm (positive corona).

Fig. 5. Radial distribution of the electric field corresponding to V ¼ 6.2 kV,
r0 ¼ 62.5 mm and R ¼ 1.1 cm (positive corona).
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order of magnitude smaller than electrons. In the positive drift
region, O2

þ is by far the most numerous species (Fig. 4). Therefore,
a simplified model with only two charged species (electrons and
O2
þ) should reproduce the basic characteristics of the positive

corona discharge in oxygen. The governing equations of the posi-
tive corona discharge can then be written as

�1
r
d
dr

½rNemeE� ¼ ða� hÞNemeE; (5)

I ¼ 2pe0rL
�
NemeE þ NpmpE

�
; (6)

1
r
d
dr

½rE� ¼ e0
30

�
Np � Ne

�
; (7)

�1
r
d
dr

�
rk

dT
dr

�
¼ EJion; (8)
Fig. 6. Radial distribution of the electron density around the wire for r0 ¼ 62.5 mm and
R ¼ 1.1 cm (positive corona).
where Ne and Np are the number densities of the electron and
positive ions (O2

þ), a and h are the ionization and attachment
coefficients, respectively, I is the electric current intensity, and me
and mp denote the mobility of electrons and positive ions. For
convenience, the equation for the current intensity (6) will be used
instead of the continuity equation to determine the distribution of
positive ions.

To our knowledge, the set of coupled nonlinear equations
(5)e(8) have not an analytical solution, and its numerical integra-
tion is not straightforward. However, as it will be shown in the
following sections, some substantial simplifications of the physical
problem can still be made, thus facilitating its analytical resolution.

4.1.1. Electric field distribution
In the ionization region, the electric field due to the space charge

(Fig. 3) is negligible compared to the applied electric field. There-
fore, the total electric field is Laplacian, and satisfies the relation
[19]:
Fig. 8. Radial distribution of temperature corresponding to r0 ¼ 62.5 m and R ¼ 1.1 cm
(positive corona).



Fig. 9. Radial distribution of positive ions (negative corona) for V ¼ 6.8 kV,
r0 ¼ 62.5 mm and R ¼ 1.1 cm (exact numerical solution).
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EðrÞ ¼ E0r0
r

; (9)

where E0 is the electric field on the surface of the wire. In contrast,
the positive space charge is very important in the drift region
(Fig. 4), and reinforces the applied field. Therefore, the electric field
on wire will be smaller than the corresponding harmonic electric
field,

Ehðr0Þ ¼ V

r0 ln
�
R
r0

	 : (10)

in order to satisfy that the circulation of the total electric field
between the wire and the cylinder must be equal to the potential
difference,
Fig. 10. Radial distribution of electrons and negative ions (negative corona) for
V ¼ 6.8 kV, r0 ¼ 62.5 mm and R ¼ 1.1 cm (exact numerical solution).
V ¼ fðr0Þ � fðRÞ ¼
ZR
r0

E dr: (11)

The electric field in the drift region must be obtained by solving
Gauss equation,

1
r
d
dr

½rE� ¼ e0Np

30
; (12)

where only the positive space charge, due to ions O2
þ, needs to be

taken into account. However, since the density of ions and electrons
affects negligibly the electric field in the ionization region, equation
(12) is also satisfied in the entire inter-electrode gap. Besides, the
electric current in the drift region is mostly transported by O2

þ,

I ¼ 2pe0rLmpNpE: (13)

Then, introducing (13) in (12), the governing equation for the
electric field can be written as

1
r
d
dr

½rE� ¼ I
2p 30rLmpE

; (14)

whose solution is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

r2
þ A2

s
; (15)

where c ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E20 � A2

q
and A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ð2p 30LmpÞ

q
. The parameter A

accounts for the contribution of the space charge to the total
electric field, which can be ignored in the vicinity thewire (A � E0).
Therefore, czE0r0 and (15) becomes (9) in the ionization region.

The value of the parameter c can be obtained from the integral of
the electric field between the electrodes,

V ¼ c

2
64ln�R

r0

	
þ ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðAr0=cÞ2

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðAR=cÞ2

q
1
CAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
AR
c

	2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Ar0
c

	2
s 3

75; (16)

Moreover, since Ar0=c�1, this equation can be simplified to

V ¼ c

"
ln
�
R
r0

	
� ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
AR
c

	2
s !

þ lnð2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
AR
c

	2
s

�1

#
: ð17Þ

Using the experimental voltages and currents of the CV char-
acteristic as input data, this equation allows the evaluation of the
electric field strength E0 on the wire surface. Then, it can be used in
(15) to determine the distribution of the electric field in the whole
inter-electrode space. A comparison between the electric field
distributions calculated from the exact numerical model and from
(15) is presented in Fig. 5. The agreement between the two results is
excellent.

4.1.2. Electron density distribution
Within the ionization region, the electric field is very high and

electron attachment can be neglected since, contrary to ionization,
the attachment coefficient decreases with increasing the electric
field. The ionization coefficient can be approximated by the
following analytical expression [23]:
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a ¼ A1 exp
�
�B1

E

	
; (18)

where A1 ¼ 8.97 � 103 cm�1 and B1 ¼1.45 � 105 V/cm. Substituting
(18) and (9) in (5), the equation governing for the electron density
can be written as

1
r
d
dr

½rNemeE� ¼ �ðA1expð�B2rÞÞNemeE; (19)

where B2 ¼ B1=ðE0r0Þ.
Moreover, in the ionization region, the electric current is mainly

transported by electrons, as it can be deduced from the numerical
resultspresented in Fig. 3. The electrondensityat thewire surface can
then be obtained from the experimental current voltage character-
istic using (6), and it will be taken as a boundary condition for (19),

Neðr0Þ ¼ I
2pe0r0LmeðE0ÞE0

: (20)

The electron density distribution is finally determined by inte-
grating (19) between r0 and r

NeðrÞ ¼ I
2pe0L

1
b1r þ b2r0E0

exp
�
� A1

B2
expð�B2r0Þ

	

exp
�
A1

B2
expð�B2rÞ

	
: ð21Þ

where the electron velocity, meE, has been fitted as a linear function
of the electric field from the experimental data available in [23],

meE ¼ b1 þ b2E ¼ b1 þ b2
E0r0
r

(22)

with b1 ¼ 1:42� 107 cm=s and b2 ¼ 257:3 cm2=ðVsÞ. This linear
fitting is only valid in the ionization region, where the electric field
is sufficiently high.

Equation (21) predicts an exponential decrease of the electron
density with the radial distance, which is in excellent agreement
with the results obtained from the numerical simulation (Fig. 6).

4.1.3. Positive ion density distribution
As shown in Figs. 3 and 4, the electric current is sustained by

electrons in the ionization region and by O2
þ in the drift region.

However, at the border between the two regions, both electrons
and positive ions contribute to the transport of current. Therefore,
the general expression for the density of positive ions can be
obtained by substituting (15) and (21) in (6),

NpðrÞ ¼ I
2pLe0E0r0mp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Ar
E0r0

	2
s

�
�
1� exp

�
� A1

B2
expð�B2r0Þ

	
exp

�
A1

B2
expð�B2rÞ

	�
;ð23Þ

Within the drift region, the transport of current is entirely due to
positive ions, and (23) simplifies to

NpðrÞ ¼ I
2pLe0E0r0mp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Ar
E0r0

	2
s : (24)

That is, the spatial distribution of positive ions is only deter-
mined by the spatial distribution of the electric field.

In Fig. 7, the analytical solution (23) is compared with the exact
numerical results. Clearly, the analytical solution constitutes an
excellent approximation.
4.1.4. Temperature distribution
The augmentation of the gas temperature due to Joule heating

has two effects on the electrical discharge. Firstly, it changes the
transport coefficients of the gas and, secondly, it modifies the rate
coefficients of many reactions that depend on temperature. The
microscopic origin of the gas heating is the exchange of energy
between charged species, accelerated by the electric field, and
neutral species. The contribution of electrons to the gas heating can
be neglected, since the energy transfer from electrons to heavy
species is inefficient due to the differences in their masses.
Furthermore, the ion O2

þ is the dominant charged particle, as
confirmed by the numerical results. Thus, the power density
contributing to the gas heating can be reduced to the energy
exchange between O2

þ and neutral molecules,

PhðrÞzEðrÞJpðrÞ; (25)

where Jp(r) ¼ e0mpNp(r)E(r) is the current density of positive ions.
The equation governing the gas temperature is then obtained by

substituting (15) and (23) in (8),

�1
r
d
dr

�
rk

dT
dr

�
¼ I

2pL
EðrÞ
r

�
1� exp

�
� A1

B2
expð�B2r0Þ

	

� exp
�
A1

B2
expð�B2rÞ

	�
; ð26Þ

Two boundary conditions are required in order to integrate this
equation. On the cylinder surface, the temperature is taken as
constant and equal to the ambient temperature, since that elec-
trode is in direct contact with the external air. On the wire, the gas
is assumed to be in thermal equilibrium with this electrode.
Therefore

TðRÞ ¼ 298 K;
dT
dr

����
r0

¼ 0: (27)

The exponential terms in (26) are only important in the ioni-
zation region, where the positive ion current tends to zero towards
the wire. However, the extension of the ionization region is very
small compared with the gap between the electrodes, and it can be
neglected without introducing much error. Conversely, beyond the
ionization region, the current is mainly transported by the positive
ions. As shown in Section 4.1.1, the electric field in the drift region is
affected by the presence of the positive space charge. However, in
order to obtain a simple analytical solution for the gas temperature
distribution, the electric field will be approximated by the Laplacian
electric field (9) in the whole inter-electrode gap. Therefore, the
temperature equation becomes,

�1
r
d
dr

�
rk

dT
dr

�
¼ c1

r2
; (28)

where c1 ¼ E0r0I=ð2pLÞ. A straightforward integration of this
equation gives

TðrÞ ¼ TðRÞ þ c1
2k

ln
�
R
r

	
ln

 
Rr
r20

!
: (29)

This relation also reflects the dependence of temperature on the
electric current and on the electric field on the wire through the
parameter c1.

Fig. 8 shows that the analytical solution (27) agrees qualitatively
with the result obtained from the exact numerical model. The
differences between the two solutions are due to the fact of having
neglected the effect of the space on the electric field. The impor-
tance of the space charge increases with the applied voltage.
Therefore, the agreement between the analytical solution and the
exact numerical simulation is better at low applied voltages.



Fig. 11. Radial distribution of the electric field corresponding to V ¼ 6.2 kV,
r0 ¼ 62.5 mm and R ¼ 1.1 cm (negative corona).
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4.2. Negative corona discharge

In negative corona, the volume of the electrical discharge can be
divided in three regions. The first region, surrounding the wire, is
the ionization region. Due to the high intensity of the electric field,
ionization is the dominant process occurring in the vicinity of the
wire. The electrical discharge is sustained by secondary electron
emission from the cathode produced by the impact of photons and
positive ions. Since electron avalanches progress towards the
anode, a maximum of electron density is reached at a certain
distance from the wire. The region around that maximum is named
the active region, because most of the chemical activity induced by
the corona discharge occurs in that zone. Finally, the rest of the
inter-electrode gap, up to the anode, constitutes the drift region,
where electron attachment dominates over ionization owing to the
low intensity of the electric field.

Similarly to positive corona, the numerical solution of (1)e(3)
shows that a single ionic species is dominant in the ionization
and drift regions: Oþ

2 and O�
3 , respectively (Figs. 9 and 10). There-

fore, a simplified model with only three species (electrons, Oþ
2 and

O�
3 ) may be sufficient to reproduce the basic characteristics of the

negative corona discharge in oxygen. The governing equations of
the charged particles, electric field and temperature are then
written as

1
r
d
dr

½rNemeE� ¼ ða� hÞNemeE; (30)

1
r
d
dr

h
rNpmpE

i
¼ �aNemeE; (31)

1
r
d
dr

½rNnmnE� ¼ hNemeE; (32)

�1
r
d
dr

½rE� ¼ e0
30

�
Np � Nn � Ne

�
; (33)

�1
r
d
dr

�
rk

dT
dr

�
¼ EJion; (34)

whereNn is the number density of the negative ions (O�
3 ).The above

equations constitute a set of differential nonlinear coupled equa-
tions, which do not possess analytical solution. However, taking
into account the information provided from more complex
numerical simulations [15], approximate analytical solutions can be
derived after introducing some simplifications.

4.2.1. Electric field distribution
According to the simulation results shown in Fig. 9, the electric

is negligibly affected by the positive space charge in the ionisation
region. Therefore, in that region, the electric field distribution can
be described by means of (9), similarly to positive corona. On the
contrary, the space charge is important in the drift region, which is
dominated by ozone ions, O�

3 . Gauss equation and the current
equation can be written in the drift region as follows:

1
r
d
dr

½rE� ¼ e0Nn

30
; (35)

I ¼ 2pe0rLmnNnE; (36)

where E and I represent the moduli of the electric field and current
intensity, respectively. Since the density of the negative ions is
insignificant in the ionisation region and in the active region,
equation (35) can be considered valid in the whole inter-electrode
space. This equation is formally identical to (12) for positive
polarity. Thus, both share the same solution, and the electric field
distribution can be expressed as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

r2
þ D2

s
; (37)

where czE0r0 and D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ð2p 30LmnÞ

p
. Moreover, since Dr0 � c,

the relation between the parameter c and the electric potential will
be analogous to (17),

V ¼ c

"
ln
�
R
r0

	
� ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
DR
c

	2
s !

þ lnð2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
DR
c

	2
s

� 1

#
; (38)

where V is the absolute value of the negative high voltage applied to
the wire. Soria et al. and Feng, among others, have derived similar
expression for the electric field and potential [11,24].

The applied voltage and measured current are used as input
parameters in (38) to calculate the electric field on the wire surface.
Then, the spatial distribution of the electric field can be determined
using (37). In Fig. 11, the analytical solution is compared with the
predictions of a complete numerical simulation. Both results are in
good agreement.

4.2.2. Electron density distribution
In oxygen, the principal ionization reaction is

eþ O2/Oþ
2 þ eþ e; (R3)

while two different processes compete for the electron attachment

eþ O2/O� þ O; (R4)

eþ O2 þ O2/O�
2 þ O2 (R5)

However, as the ions O� and O�
2 are drifted towards the anode,

they are converted into O�
3 according to the following reactions:



Fig. 12. Radial distribution of the electron density for r0 ¼ 62.5 mm and R ¼ 1.1 cm
(negative corona).
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O�
2 þ O3/O2 þ O�

3 ; (R6)

O� þ O3/Oþ O�
3 : (R7)

Reactions (R6) and (R7) show that the equations governing the
densities of charged and neutral particles are coupled. In (37), this
fact was indirectly taken into account by using the mobility of O�

3 .
However, in the case of gas flow, the dominant ion is not always O�

3 ,
but it depends on the value of the gas flow [25].

The attachment coefficient for reactions (R4) and (R5) can be
interpolated from the data provided by Eliasson and Kogelschatz
[23] as follows:

h ¼ a1 þ a2Eþ a3E
2 þ a4E

3;
�
1:1� 104 � E � 2:0� 105 V=cm

�
(39)

where a1 ¼ 100.7 cm�1, a2 ¼ �1.27 � 10�3 V�1,
a3 ¼ 6.818 � 10�9 cm/V2 and a4 ¼ �1.416 � 10�14 cm2/V3.

The electron density is only important in the active region of the
corona discharge. According to the numerical simulation results,
the electric field in that region can be satisfactorily approximated
by the Laplacian electric field (9). Therefore, the attachment coef-
ficient will be expressed as

h ¼ a1 þ
a2
r
þ a3

r2
þ a4

r3
; (40)

where a1 ¼ a1, a2 ¼ a2E0r0, a3 ¼ a3ðE0r0Þ2 and a4 ¼ a4ðE0r0Þ3.
Substituing (18) and (40) in (30) and integrating along the radial

coordinate, the following expression for the electron density is
obtained,

NeðrÞ ¼ Neðr0Þ
meðr0ÞE0

meE

�r0
r

�a2þ1

� exp

"
A1

B2
ðexpð�B2r0Þ � expð�B2rÞÞ � a1ðr � r0Þ

þ a3

�
1
r
� 1
r0

	
þ a4

2

 
1
r2

� 1
r20

!#
; ð41Þ

where the ratio of electron velocities, me(r0)E0/meE, can be evaluated
using (22). Only the electron density on the wire, Ne(r0), remains to
be determined. This will be done in Section 4.2.4, after deriving the
expression for the positive ion density.

The relation (41) exhibits a sharp increase of the electron
density near the wire, due to the ionization process, followed by
a rapid decrease caused by the dominance of attachment over
ionization. Fig. 12 shows that the analytical solution of the electron
density is in fair agreement with the numerical simulation results.
The small difference between the two methods is mainly due to
having ignored reactions of secondary importance in the analytical
solution.

4.2.3. Positive ion density distribution
The electric current is mainly transported by the positive ions

(Oþ
2 ) in the ionization region. Therefore, the current on the wire

surface is given by

Iz2pe0r0LmpNpðr0ÞE0; (42)

Integrating (31) and using (42) as a boundary condition for the
positive ion density on the wire, the spatial distribution of positive
ions can be expressed as

NpðrÞ ¼ 1
r0E0mp

2
4 I
2pLe0

� A1r0E0

Zr
r0

meNe expð�B2rÞdr
3
5; (43)
Unfortunately, the evaluation of the integral must be done
numerically, after substituting (41) in (43). The predictions of this
semi-analytical relationandof thenumerical simulationarecompared
in Fig. 13. Only minor differences are observed between both results.

4.2.4. Electron density on the wire surface
In order to evaluate the electron density distribution in (41), the

electron density on the wire surface must be first determined. In
the active region of the corona discharge, the electron current
reaches a maximum when the ionisation coefficient equals the
attachment coefficient. According to (18) and (39), this happens for
an electric field strength of about El ¼ 30 kV/cm, and at a radial
coordinate rlzE0r0=El. In such a place, the electric currents due to
positive and negative ions are similar, JnðrlÞzJpðrlÞ, and the total
current can be written as

I ¼ 2pe0rlL
�
JeðrlÞ þ 2JpðrlÞ

�
¼ 2pe0rlL

�
meðrlÞNeðrlÞ þ 2mpNpðrlÞ

�
EðrlÞ; (44)

This equation can be used as a boundary condition to determine
the electron density on the wire surface. Substituting (41) and (43)
in (44) leads to

Neðr0Þ ¼ I
2pLe0meðr0ÞE0

1

2A1

2
4 Zrl

r0

r expð�B2rÞf ðrÞdr
3
5� rlf ðrlÞ

;

(45)

where

f ðrÞ ¼
�r0
r

�a2þ1
exp

"
A1

B2
ðexpð�B2r0Þ � expð�B2rÞÞ

� a1ðr � r0Þ þ a3

�
1
r
� 1
r0

	
þ a4

2

 
1
r2

� 1
r20

!#
: (46)

4.2.5. Negative ion density distribution
As discussed in Section 4.2.2, the ions O� and O�

2 are converted
into O�

3 through reactions (R6) and (R7). The radial distribution of
O�
3 is then obtained by integrating (32)



Fig. 13. Radial distribution of the positive ion (Oþ
2 ) density for r0 ¼ 62.5 mm and

R ¼ 1.1 cm (negative corona).
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NnðrÞ ¼ 1

mnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

r2
þ D2

s Zr
r0

r
�
a1 þ

a2
r
þ a3

r2
þ a4
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NemeE dr: (47)

Similarly to the number density of positive ions, the evaluation
of the integral must be done numerically, after substituting (41) in
(47). However, in the drift region, where the electric current (36) is
only transported by O�

3 , the density of negative ions can also be
expressed as

NnðrÞ ¼ I
2pLe0mnrE

¼ I

2pLe0mnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

r2
þ D2

s : (48)

In Fig. 14, the numerical simulation results are compared with
the predictions of the semi-analytical relation (47).
Fig. 14. Radial distribution of the negative ion (O�
3 ) density for r0 ¼ 62.5 mm and

R ¼ 1.1 cm (negative corona).
4.2.6. Temperature distribution
In the negative corona, the exchange of energy between the ions

O2
þ and the gas molecules constitutes the main process for the gas

heating. Therefore, the power density contributing to the gas
heating can be expressed as

PhðrÞzEðrÞJpðrÞ ¼ E0r0
I

2pLr2
; r0 � r � ri (49)

The validity of this expression is restricted to the ionization
region, where the positive ion current is important. Beyond the
ionization region, that is, in the active and drift regions, the electric
current is mainly transported by electrons and negative ions,
respectively. Since the electric field is significantly lower in the drift
region, the exchange of kinetic energy between the negative
carriers and the gas molecules is insufficient to cause an important
gas heating. Thus, the power density contributing to the gas heating
will be negligible,

PhðrÞz0; ri � r � R: (50)

Substitutions of (49) and (50) in (34) leads to

�1
r
d
dr

�
rk

dT
dr

�
z
c1
r2
; r0 � r � ri (51)

�1
r
d
dr

�
rk

dT
dr

�
z0; ri � r � R; (52)

where c1 ¼ E0r0I/(2pL).
To integrate (51) and (52), the same boundaries as for the

positive corona discharge are taken on the wire and on the outer
electrode. At the border of the ionization region, the continuity of
temperature and of the heat flux is imposed,

TðRÞ ¼ 298 K;
dT
dr

����
r0
¼ 0; Tðri�Þ¼ TðriþÞ;

dT
dr

����
r�i

¼ dT
dr

����
rþi

: (53)

The analytic solutions of (51) and (52) are then

TðrÞ ¼ c1
k

"
1
2
ln
�ri
r

�
ln

 
rir
r20

!
þ ln

�
r0
ri

	
ln
�ri
R

�#
þTðRÞ; r0 � r� ri

(54)

TðrÞ ¼ c1
k

ln
�
r0
ri

	
ln
�r
R

�
þ TðRÞ; ri � r � R: (55)
Fig. 15. Radial distribution of temperature corresponding to r0 ¼ 62.5 m and R ¼ 1.1 cm
(negative corona).
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According to the previous results, the value for ri can be taken as
riz0:03 cm. At this position, the power density has decreased
about 20 times from its value on the surface of the wire. In Fig. 15,
the radial distribution of temperature given by the relations (54)
and (55) is compared with the result of the numerical simulation.
The agreement between both results is quite satisfactory. As for the
positive corona, the gas temperature is controlled by the parameter
c1, which depends on the product E0I.

5. Conclusion

In this paper, analytical expressions of the electric field, charged
particles and temperature in the inter-electrode space have been
obtained for both positive and negative wire-to-cylinder DC corona
discharge in pure oxygen. The analytical solutions have been
derived using a simplified fluid model of the corona discharge, and
solving Gauss equation, the continuity equations of charged parti-
cles and the heat conduction equation. A priority objective of this
work was to keep the model as simple as possible, so that the
analytical solutions were straightforward. The voltages and current
intensities measured in experiments have been used as input data
to obtain the analytical expressions. The simplifications introduced
in the analytical model have been justified on the basis of the
results provided by amore complete numerical model of the corona
discharge. The agreement between the analytical solutions and the
exact numerical results is very satisfactory. Even though some
important processes of the corona discharge, like photoemission
and the photoionisation, have apparently been ignored in the
analytical model, they have been taken into account indirectly by
using the experimental currentevoltage characteristic as
a boundary condition of the governing equations. The averaged gas
temperature caused by Joule heating was found to depend on the
product of the electric current and the electric field on the wire
surface. Finally, the present analytical approach can also be useful
in other gases, apart from oxygen, that produce stable corona
discharge, and it may helps to understand the physics of corona
discharge in applications like decomposition of gaseous pollutants,
sterilization, polymer treatment, ozone production, etc.
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